Investigation of Seed Germination Inhibitory Factors by Allelopathy of Purple Nutsedge Essential Oil

Arisa Noguchi, Misa Hatano and Hiroko Nakatsuka

Department of Agriculture, Tokyo University of Agriculture, 1773 Funako, Atsugi City, Kanagawa Prefecture, 243-0034 Japan.

a3noguch@nodai.ac.jp

Keywords: weeds, crop seed, Cyperus rotundus

Summary

The effect of allelopathic germination inhibitory effect of essential oil from tubers of purple nutsedge (Cyperus rotundus L.) on seeds of weeds and crops was investigated. Test plants were 5 weeds and 5 cultivated crops (Weeds: Eleusine indica (L.) Gaertn., Digitaria ciliaris (Retz.) Koeler, Bidens pilosa L. var. pilosa, Galinsoga quadriradiata (ciliata) (Raf.) Blake, Trifolium repens L., Crops: Zea mays L., Daucus carota L., Lactuca sativa var. crispa, Raphanus sativus var. sativus, Brassica rapa var. perviridis. Addition of 400 ppm concentration of purple nutsedge essential oil significantly reduced the germination percentage of weed seeds. In particular, the

germination percentage was remarkably suppressed to 0% in *Galinsoga*. Among crop seeds, the germination rate decreased only in carrot. The germination rate tended to be lower for plants with smaller seed sizes. The seed germination rate of *Galinsoga*, which has the smallest seed size, decreased as the concentration of essential oil increased, even at concentrations of 40 ppm or less. On the other hand, the germination rate of komatsuna seeds did not decrease even at essential oil concentration of 600 ppm.

IPPS Vol. 72 - 2022

Copyright© Noguchi et al. The use, distribution or reproduction of materials contained in this manuscript is permitted provided the original authors are credited, the citation in the Proceedings of the International Plant Propagators' Society is included and the activity conforms with accepted Academic Free Use policy.

19

INTRODUCTION

Allelopathy is a phenomenon in which chemicals released by plants exert some inhibitory or stimulatory effect on other organisms. In agriculture, research is being conducted on its use for weeds suppression and crop growth promotion (Kobayashi and Ito, 1998; Scavo and Mauromicale, 2021). Among green manures, the effectiveness of white mustard and hairy vetch in controlling pests and weeds is thought to be caused by allelopathy. However, the effect is greatly influenced by the target plant species and environment, and for practical application, it is necessary not only to identify the causative agent of allelopathy but also to clarify the factors such as the sensitivity of the recipient plant (Islam and Hasan, 2021).

The purple nutsedge (Cyperus rotundus L.) belongs to Cyperaceae. It is a perennial herb that is native to southern Japan and sub-tropical to tropical areas of the world. This herb grows on maritime sands, roadside and shore of paddy field. Tubers of this plants used as a traditional herbal medicine for nervous disease or menstrual problem (Kilani et al., 2008). However, purple nutsedge has an underground tuber, and even if the above-ground part is removed, the remaining tubers continue to sprout. Therefore, in Japan, it is treated as a tough weed that is difficult to eradicate in upland fields. The purple nutsedge has been shown to exhibit growthinhibiting allelopathic effects (Quayyum et al., 2000; Abo-Altemen et al., 2019). Therefore, in this study, we investigated the effect on the germination percentage of weed and crop seeds using the essential oil of purple nutsedge (Stoller and Sweet, 1987; Keeley, 1987; Komai et al., 1990; Dhillon et al., 1993), which has been reported to have an inhibitory effect on seed germination. Besides, we examined the relationship with

the characteristics of the seeds and inhibitory effect of purple nutsedge essential oil.

MATERIALS AND METHODS

Tubers of purple nutsedge collected at the Atsugi Campus of Tokyo University of Agriculture, Kanagawa Prefecture. The essential oil of purple nutsedge was obtained by steam distillation of these tubers. In the germination test, 20 seeds and 2 mL of pure water-diluted purple nutsedge essential oil solution (contained 0.05 % Tween 20) were placed in a glass petri dish ($\phi 60 \text{ mm} \times 20$ mm) lined with one layer of filter paper (No.2, Advantec Co., Ltd.). Water was used in a control. However, since sweet corn has a larger seed size than others, φ 90 mm petri dishes were used and the amount of added water was increased (total amount was 10mL), resulting in an essential oil concentration of 80 ppm. The petri dishes were maintained in an incubator at 24°C and 18hour light / 6-hour dark condition. The seed germination rate of each dish was measured.

Test plants were 5 weeds and 5 cultivated crops. Weeds: goosegrass (Eleusine indica (L.) Gaertn.), southern crabgrass (Digitaria ciliaris (Retz.) Koeler), hairy beggarticks (Bidens pilosa L. var. pilosa), hairy galinsoga (Galinsoga quadriradiata (ciliata) (Raf.) Blake), white clover 'Huia' (Trifolium repens L.), Crops: 'Golden Bantam' sweet corn (Zea mays L.), 'Tokinasi Sansun' carrot (Daucus carota L.), red-leaf lettuce (Lactuca sativa var. crispa), 'Kuroha mino wase' Chinese radish (Raphanus sativus var. sativus), 'Ajisai' komatsuna (Brassica rapa var. perviridis). The species and time to germination measurement are shown in Tables 1 and 2, respectively. The survey was repeated three times in each plot. Seed length, thickness and 1000-grain weight were also measured for each test plant.

Common name	Scientific name	Family name	Incubating temperature (°C)	Light condi- tion	Incubation time (hr)
Goosegrass	Eleusine indica	Poaceae	30	18h-L/6h-D	72
Southern crabgrass	Digitaria ciliaris	Poaceae	24	18h-L/6h-D	72
Hairy beggar- ticks	Bidens pilosa var. pilosa	Asteraceae	24	18h-L/6h-D	72
Hairy galinsoga	Galinsoga quad- riradiata	Asteraceae	22	18h-L/6h-D	72
White clover 'Huia'	Trifolium repens	Fabaceae	24	18h-L/6h-D	72

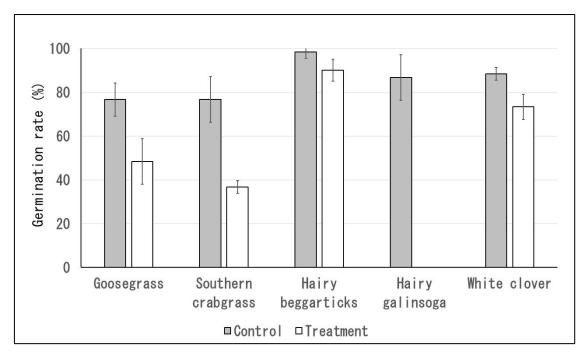
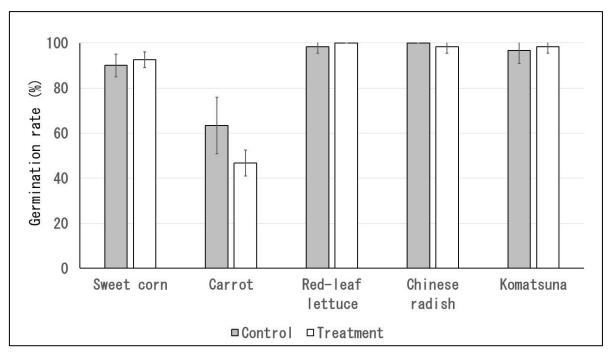

Table 1. List of test weeds and incubation conditions for seed germination.

Table 2. List of test vegetables and incubation conditions for seed germination.


Common name	Scientific name	Family name	Incubating temperature (°C)	Light condi- tion	Incubation time (hr)
Sweet corn 'Golden Bantam'	Zea mays	Poaceae	24	18h-L/6h-D	72
Carrot 'Tokinasi sansun'	Daucus carota	Apiaceae	24	18h-L/6h-D	120
Red-leaf lettuce	Lactuca sativa var. crispa	Asteraceae	24	18h-L/6h-D	72
Chinese radish 'Kuroha mino wase'	Raphanus sa- tivus var. sa- tivus	Brassicaceae	24	Dark	72
Konatsuna 'Ajisai'	Brassica rapa var. perviridis	Brassicaceae	22	Dark	48

RESULTS AND DISCUSSION

Addition of 400 ppm concentration of purple nutsedge essential oil significantly reduced the germination rate of weed seeds. In particular, the germination rate was remarkably suppressed to 0% in hairy galinsoga (**Fig. 1**). Among crop seeds, the germination rate decreased only in carrot (**Fig. 2**). The germination rate tended to be lower for plants with smaller seed sizes (**Figs. 3 and 4**). In particular, the correlation coefficient between germination rate and 1000-grain weight was as high as 0.73 in plants with 1000-grain weight of 3 g or less.

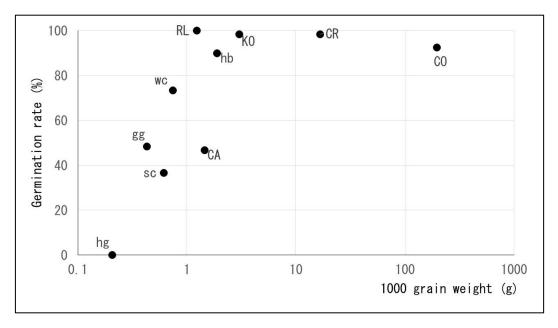

Figure 1. Effect of essential oil obtained from tubers of purple nutsedge at 400 ppm on germination rate of weed seeds (n = 3, error bars are standard deviation).

Figure 2. Effect of essential oil obtained from tubers of purple nutsedge at 400 ppm on germination rate of vegetable seeds (n = 3, error bars are standard deviation).

Figure 3. Relationship between thickness of seed and germination rate of seeds treated with essential oil obtained from tubers of purple nutsedge. Abbreviations: gg = goosegrass, sc = southern crabgrass, hb = hairy beggarticks, hg = hairy galinsoga, wc = white clover, CO = sweet corn, CA = carrot, RL = red-leaf lettuce, CR = chinese radish, KO = komatsuna.

Figure 4. Relationship between weight of seed and germination rate of seeds treated with essential oil obtained from tubers of purple nutsedge. Abbreviations are the same as Figure 3.

The seed germination rate of hairy galinsoga, which has the smallest seed size, decreased as the concentration of essential oil increased, even at concentrations of 40 ppm or less (**Fig. 5**). On the other hand, the germination rate of komatsuna seeds did not decrease even at essential oil concentration of 600 ppm (**Fig. 6**), suggesting that germination of komatsuna seeds would not be affected until concentrations higher than this.

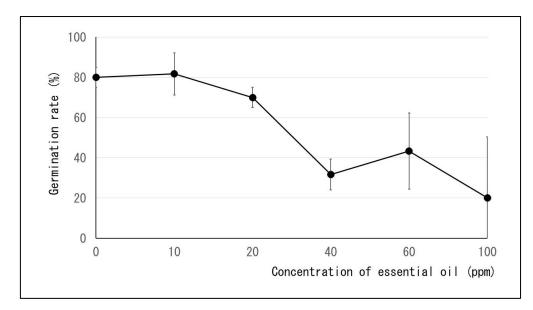


Figure 5. Effect of essential oil concentration of purple nutsedge on germination rate of hairy galinsoga (n = 3, error bars are standard deviation).

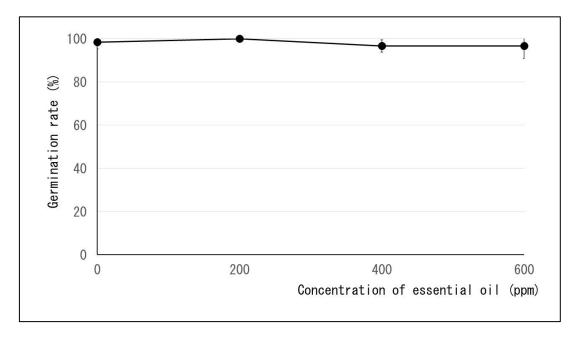


Figure 6. Effect of essential oil concentration of purple nutsedge on germination rate of komatsuna (n = 3, error bars are standard deviation).

From these results, it is considered that the weight of seed to be applied to the seed size greatly affects the suppression of germination by the essential oil of the nutgrass.

However, the difference in germination rate between carrot and lettuce was observed even though the seed size was similar, suggesting that not only the quantitative factor of the inhibitor but also the difference in susceptibility between plant species is involved. In conclusion, from the above results, it is expected that the essential oil of purple nutsedge can be used as a natural pesticide for controlling weeds small seeds, although

LITERATURE CITED

Abo-Altemen, R.A., Al-Shammari, A.M. and. Shawkat, M.S. (2019). GC-MS analysis and chemical composition identification of *Cyperus rotundus* L. from Iraq. Energy Procedia *157*:1462-1474.

https://doi.org/10.1016/j.egypro.2018.11.3 11

Dhillon, R.S., Singh, S., Kundra, S. and Basra, A.S. (1993). Studies on the chemical composition and biological activity of essential oil from *Cyperus rotundus* Linn. Plant Growth Regulation *13*:89-93. https://doi.org/10.1007/BF00207597

Islam, M. and Hasan, M. (2021). Bioherbicidal properties of *Parthenium hysterophorus, Cleome rutidosperma* and *Borreria alata* extracts on selected crop and weed species. Agronomy 11:643.

https://doi.org/10.3390/agronomy11040643

Keely, P.E. (1987). Interferrence a d interaction of purple and yellow nutsedges (*Cyperus totundus* and *C. esculentus*) with crops. Weed Technology *1*: 74-81.

https://doi.org/10.1017/S0890037X000291 71

Kobayashi, Y. and Ito, M. (1998). Valuation of phototoxic activity of naturally occurring phenolic compounds. J. Weed Sci. Tech. *43*:341-348.

https://doi.org/10.3719/weed.43.341.

it inhibits the germination of weed seeds, but hardly inhibits the germination of crop seeds.

Kilani, S., Ledauphin, J., Bouhle, II., sghaier, M.B., Boubaker, J., Skandrani, I., Mosarti, R., Ghedira, K., Barillier, A.D., and Chekir-Ghedira, L. (2008). Comparative study of *Cyperus rotundus* essential oil by a modified GC/MS analysis method. Evaluation of its antioxidant, cytotoxic, and apoptonic effects. Chemistry & Biodiversity 5:729-742.

https://doi.org/10.1002/cbdv.200890069

Komai, K., Seto, N., Matsubayashi, K. and Hamada, M. (1990). Plant growth inhibition by a sesquiterpene ketolcohol, cyperolone, isolated from purple nutsedge tubers. J. Weed Sci. Tech. *35*:164-168. https://doi.org/10.3719/weed.35.164.

Quayyum, H.A., Mallik, A.U., Leach, D.M. and Gottardo, C. (2000). Growth inhibitory effects of nutgrass (*Cyperus rotundus*) on rice (Oryza sativa) seedlings. J. Chemical Ecology 26:2221-2231.

https://doi.org/10.1023/A:1005532802836

Scavo, A. and Mauromical, G. (2021). Crop allelopathy for sustainable weed management in agroecosystems: Knowing the present with a view to the future. Agronomy *11*:2104. <u>https://doi.org/10.3390/agronomy11112104</u>

Stoller, E.W. and Sweet R.D. (1987). Biology and life cycle of purple and yellow (*Cyperus rotundus* and *C. esculentus*). Weed Technology *1*:66-73.

https://doi.org/10.1017/S0890037X000291 6X