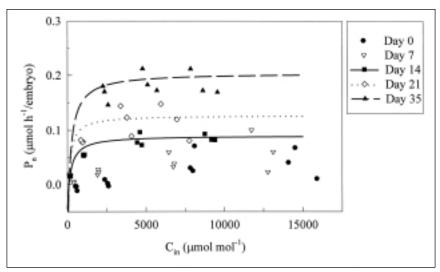
Effect of CO₂ Concentration on Net Photosynthetic Rate of *Coffea* ×*arabusta* Somatic Embryos Cultured Photoautotrophically[®]

A. Uno, C. Kubota, K. Ohyama, W. Chintakovid, and T. Kozai Faculty of Horticulture, Chiba University, Matudo, Chiba 271-8510

INTRODUCTION


Somatic embryos have been used for woody plant micropropagation. In *Coffea*, Afreen et al. (2001) showed that *C*. ×*arabusta* cotyledonary embryos had photosynthetic ability and could be cultured photoautotrophically (sugar-free culture) (Kozai, 1991). Therefore, application of photoautotrophic culture from the cotyledonary embryo stage through the rest of the production stages potentially shortens the transplant production period and enhances the establishment of transplants ex vitro as compared with photomixotrophic culture (sugar-containing culture). In this study, effect of CO_2 concentration on the net photosynthetic rate of *C*. ×*arabusta* somatic embryos was investigated to determine the environmental conditions for the photoautotrophic culture of somatic embryos.

MATERIALS AND METHODS

Ten cotyledonary embryos were cultured in each of three 22-ml vessels with MS medium and fibrous supporting materials (Florialite, Nisshinbo Ind. Inc., Tokyo). Cultures were placed for 36 d under 100 mmol m⁻²·s⁻¹ PPF, 16-h photoperiod, 26°C air temperature, 75% relative humidity, and 1500 mmol·mol⁻¹ CO₂ concentration. The number of air exchanges of the vessel was 3.0 h⁻¹. On Days 0, 7, 14, 21, and 35 the vessels were sealed (0.05 h⁻¹ number of air exchanges) and changes in CO₂ concentration inside the vessel (C_{in}) were recorded after it was adjusted to about 400, 3000, 8000, or 15,000 mmol·mol⁻¹. The net photosynthetic rate (P_n) and CO₂ compensation point (C_c) were estimated based on C_{in}, CO₂ concentration outside the vessels, vessel volume, CO₂ exchange rate of the medium (E_M), and number of air exchanges of the vessel. A rectangular-hyperbolic model was fitted for P_n to estimate the maximum P_n (P_m) and the CO₂ saturation point (C_s). E_M was estimated by measuring C_{in} for vessels without somatic embryos. C_s was estimated as the C_{in} that gave 95% of simulated P_m.

RESULTS AND DISCUSSION

On Days 0 and 7, $\rm P_n$ increased with increasing $\rm C_{in}$ but it was not saturated at the $\rm C_{in}$ examined. It was shown that effect of CO₂ concentration on $\rm P_n$ were different between Days 0 to 7 and 14 to 35. On Days 14, 21, and 35, the $\rm P_n$ was saturated and $\rm P_m$ was estimated as 0.09±0.004, 0.13±0.03, and 0.2±0.02 mmol per h per embryo, and C_s as about 5400, 3400, and 5000 mmol·mol⁻¹, respectively (Fig. 1). The C_c was about 100 mmol·mol⁻¹ on Days 14 to 35. Nguyen et al. (1999) also showed that photoautotrophic *C.* ×*arabusta* plantlets had high C_s (>5000 mmol·mol⁻¹). On Day 21, some somatic embryos had developed true leaves and 30% of somatic embryos had done so on Day 35. Increases in $\rm P_n$ and $\rm P_m$ with time observed in this experiment

Figure 1. Net photosynthetic rate per somatic embryo (P_n) as affected by CO_2 concentration inside the vessel (C_{in}) on days 0, 7, 14, 21 and 35. All the somatic embryos on days 0, 7 and 14 were in the cotyledonary stages. Data on days 14, 21 and 35 were fitted with the model $P_n = P_m \cdot (C-C_c)/(K+(C-C_c))$.

were due to the growth and development of somatic embryos. Results suggest that photoautotrophic growth and development of the somatic embryos will be promoted by maintaining C_{in} at 3000 to 5000 mmol·mol⁻¹.

LITERATURE CITED

- Afreen, F., S.M.A. Zobayed, and T. Kozai. 2001. Masspropagation of coffee from photoautotrophic somatic embryos. Proc. Intl. Wood Biotechnol. Symposium, Narita, 2001. (in press)
- **Kozai, T.** 1991. Autotrophic micropropagation. pp. 313-343. In: Y.P.S. Bajaj (ed.). Biotechnology in agriculture and forestry 17: High-tech and micropropagation 1. Springer-Verlag, N.Y., New York.
- Nguyen, Q. T., T. Kozai, G. Niu, and U. V. Nguyen. 1999. Photosynthetic characteristics of coffee (*Coffea* ×*arabusta*) plantlets in vitro in response to different CO₂ concentrations and light intensities. Plant Cell and Tissue Cult. 55:133-139.